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Abstract

Many countries, including South Africa, have implemented population-based household

surveys to estimate HIV prevalence and the burden of HIV infection. Most household HIV

surveys are designed to provide reliable estimates down to only the first subnational geopo-

litical level which, in South Africa, is composed of nine provinces. However HIV prevalence

estimates are needed down to at least the second subnational level in order to better target

the delivery of HIV care, treatment and prevention services. The second subnational level in

South Africa is composed of 52 districts. Achieving adequate precision at the second subna-

tional level therefore requires either a substantial increase in survey sample size or use of

model-based estimation capable of incorporating other pre-existing data. Our purpose is

demonstration of the efficacy of relatively simple small-area estimation of HIV prevalence in

the 52 districts of South Africa using data from the South African National HIV Prevalence,

Incidence and Behavior Survey, 2012, district-level HIV prevalence estimates obtained

from testing of pregnant women who attended antenatal care (ANC) clinics in 2012, and

2012 demographic data. The best-fitting model included only ANC prevalence and depen-

dency ratio as out-of-survey predictors. Our key finding is that ANC prevalence was

the superior auxiliary covariate, and provided substantially improved precision in many dis-

trict-level estimates of HIV prevalence in the general population. Inclusion of a district-level

spatial simultaneously autoregressive covariance structure did not result in improved

estimation.
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Introduction

South Africa continues to have the highest burden of HIV in the world, with 7.1 million people

living with HIV (PLHIV), an estimated 270,000 new HIV infections, and 110,000 AIDS-related

deaths in 2016 [1]. Nationally, HIV prevalence among 15-49 year-olds living in South Africa

was estimated to be 18.8% in 2012 but—importantly—varied at the provincial level from 7.8%

in the Western Cape to 27.9% in KwaZulu-Natal [2].

Allocation of resources for HIV prevention and treatment to areas of greatest need is key to

epidemic control and saving lives. For example, geographic prioritization of combination pre-

vention resources has the potential to avert substantially more HIV infections than does uni-

form distribution of those same resources [3]. The current approach to reaching the ambitious

HIV prevention, care and treatment goals relies on targeting key sub-national locations and

populations to end the HIV/AIDS epidemic by 2030 [4, 5]. South Africa’s new “focus for

impact” strategy concentrates efforts in the 27 districts most affected by HIV [6]. Those and

similar public health responses must rely on more granular epidemiological and programmatic

information describing local epidemics [5].

However, existing data sources do not usually provide reliable sub-national estimates of

HIV prevalence [7]. For example, monitoring of HIV prevalence in countries has historically

relied on surveillance among pregnant women included in semi-systematic convenience sam-

ples from (sentinel) antenatal care (ANC) clinics [8]. However, there are many important

biases inherent in ANC sentinel surveillance [9], and those data require careful analysis and

interpretation [10]. Pregnant women who attend sentinel ANC clinics may not represent the

broader population in terms of HIV burden or transmission dynamics [8, 9]. Urban popula-

tions may be over-represented among ANC sites [11]. Pregnant women are, by definition, sex-

ually active and therefore may be having unprotected vaginal sex at a greater rate than the

general population of women.

To augment available strategic information on HIV prevalence, and to address some of the

identified shortcomings in the ANC surveillance data in South Africa, national probability-

based household HIV prevalence surveys were introduced in 2002, and were repeated during

2005, 2008, 2012 [2] and 2017. Similar Demographic and Health Surveys (DHS) have incorpo-

rated HIV testing in many other countries [12]. Probability-based health surveys employ com-

plex multi-stage cluster sampling with linked anonymous HIV testing to obtain representative

samples from the population of persons who consent to testing.

Sample sizes for the South African surveys are calculated to detect a 5% change in HIV

prevalence in each of the five reporting domains (sex, age, race, locality type and province).

Sample sizes also provide a 4% margin of error in the prevalence estimates from the reporting

domains, including the domain of the nine provinces of South Africa [2]. However, the 2002,

2005, 2008 and 2012 surveys do not provide adequate precision for estimation of prevalence

within the 52 districts which comprise the nine provinces, and the 2017 survey prioritized only

certain districts for HIV prevalence estimation. Achieving adequate universal district-level

precision from a probability survey would require substantial increases in sample size. There-

fore, model-based methods which incorporate multiple sources of data are needed which can

improve precision of district level estimates without requiring large increases in sample size.

To date, subnational estimation of HIV prevalence from probability surveys has been based

upon several approaches. PrevR [13] uses kernel density estimation to interpolate from geo-

graphic point estimates of HIV prevalence from a DHS to produce continuously scaled choro-

pleth maps. PrevR does not incorporate the uncertainty of estimation from the DHS, and

cannot produce quantitative estimates of uncertainty. Bayesian kriging of individual-level

data from a household survey has been used for subnational estimation and display of HIV
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prevalence in South Africa [14]. Fully Bayesian geostatistical models have been used to esti-

mate subnational HIV prevalence from individual-level health survey data [15–17]. Unlike

PrevR, those Bayesian models accommodate the uncertainty in the data and can produce prob-

ability intervals on the estimates. However, all of those approaches used only data from a prob-

ability survey, and therefore precision remained limited largely by the information content of

the survey.

Unit- and area-level small-area estimation (SAE) methods [18–20] enable augmentation of

survey data with, for example, data from convenience sampling or routine monitoring to

improve precision over design-based domain estimation using the survey data alone. Unit-

level SAE models require that auxiliary data are available from each primary sampling unit

present in the survey data, which limits the choice of auxiliary data. Area-level models require

only that auxiliary data are available for the estimation domains from the survey. Suppose, for

example, that estimates are required for the second subnational (SNU2) level, and data are

available from a probability survey designed to produce estimates at the first subnational

(SNU1) level. Imprecise design-based domain estimates at the SNU2 level are computed using

conventional survey methods. The key idea is to model those health survey-based prevalence

estimates as functions of predictors from data which are external to the survey. The precision

of the resulting small-area estimates is a function of the precision of the direct domain esti-

mates and the degree to which the auxiliary covariates predict those domain estimates. For

example, area-level synthetic SAE of HIV prevalence in local municipal areas of South Africa

was based on data from a national household survey and five demographic variables [21].

Despite well-known relations between HIV prevalence in the general population and preva-

lence among pregnant women who attend ANC clinics [4], to our knowledge, no previous

subnational estimation efforts have exploited the information content of the latter to improve

estimation of the former. We postulated that area-level SAE of HIV prevalence for the 52 dis-

tricts of South Africa would produce substantially more precise estimates than conventional

design-based domain estimation because auxiliary estimates of HIV prevalence from ANC

surveillance should be good predictors of prevalence in the general population. Our aim was to

demonstrate the potential for improved district-level estimation using 2012 HIV household

survey domain estimates by incorporating HIV prevalence among pregnant women attending

ANC clinics and other covariates.

Materials and methods

Data

We used data from the 2012 South African National HIV Prevalence, Incidence and Behavior

Survey (SABSSM IV) [2]. That survey sampled residents from 15 randomly selected house-

holds within each of 1,000 census enumeration areas (EAs) which were selected randomly

with probability proportional to size from the 86,000 EAs of South Africa. A total of 42,950

individuals were contacted, 38,431(89.5%) consenting persons were interviewed and 28,997

(67.5%) blood specimens were tested for HIV. We computed conventional Horvitz-Thompson

design-based domain estimates [22] of district-level HIV prevalence (proportion of HIV-posi-

tives) among persons of all ages and associated standard errors from those data, henceforth

called direct estimates. District-level auxiliary predictors were: HIV prevalence among women

making the first visit of their pregnancy to public ANC clinics participating in the 2012

National Antenatal Sentinel HIV & Herpes Simplex Type 2 Prevalence Survey in South Africa

(ANCSS) [23]; population density (km-2); the percentages of housing units which were “for-

mal” dwellings [24]; dependency ratio (ratio of the numbers of residents aged 15-64 years to

those younger than 15 years and older than 64 years) [24]; socio-economic quintile (1-5) [25];
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and maternal mortality rate (maternal deaths within six weeks of parturition per 10,000 preg-

nancies) [25]. For the ANCSS, HIV testing was performed from 34,260 women between the

ages of 15-49 during their first visits to the 1,497 ANC sites which had been selected randomly

with probability proportional to size for inclusion in the 2012 round of surveillance. The auxil-

iary predictors were chosen based on both a priori assumptions about potential correlations

with HIV prevalence and their availability. We do not assume that the set of auxiliary predic-

tors selected for this demonstration provide the best possible predictions of HIV prevalence in

the general population. SAE requires only that some among them contain information about

HIV prevalence in the general population.

Ethics statement

The SABSSM IV survey protocol was approved by the Research Ethics Committee of the

South Africa Human Sciences Research Council as well as by the Associate Director of Science

of the National Center for HIV and AIDS, Viral Hepatitis, STD and TB Prevention at the US

Centers for Disease Control and Prevention (CDC). All persons who agreed to participate in

the SABSSM IV survey were required to provide either written or verbal consent for both the

interview and dry blood-spots specimen collection. Verbal consent was applied where the

respondent was illiterate. Parents and guardians of children under 18 years of age were asked

to give informed consent for inclusion of their children in the SABSSM IV survey as well as for

providing a blood specimen for HIV testing. Children aged 7 to 11 years were required to con-

firm their assent by placing a tick or cross in a demarcated box in addition to providing written

assent by means of a signature (where possible). Those aged 12 to 17 years were required to

provide written assent by means of a signature. The identities of survey participants were not

disclosed to the authors.

Participation in the 2012 ANCSS was voluntary and with informed consent [23]. For rea-

sons of confidentiality, testing was done on anonymous unlinked samples. A unique bar code

was assigned to each participant, and was used to link the demographic and socio-economic

variables with the laboratory results while maintaining anonymity of the survey participant.

The present study used published district-level summaries which contained no identifying

information about ANCSS participants.

This study was performed under the terms of the CDC protocol titled “Small Area Estima-

tion of HIV Prevalence: A protocol for analysis of publicly available census, health survey and

surveillance data for improving district-level estimation of HIV prevalence in South Africa”,

which was approved by both the CDC and the South Africa Human Sciences Research Coun-

cil. This study does not constitute human subjects research, as the primary intent is public

health practice.

Statistical models

We used variations of the basic area-level model [19, 26] to estimate district-level HIV preva-

lence in the general population. Briefly, the basic area-level model combines survey-based

direct area-level domain estimates, auxiliary (out-of-survey) predictors, and area-specific ran-

dom effects which borrow strength across areas. Conventionally, the area-level random effects

are assumed to be independently normally distributed, but spatial covariance structures can

also be modeled. We fitted 12 variations of the basic area-level model, which differed in

the inclusion of auxiliary predictors and assumptions about the random effects. We fitted

models which assumed independently normally distributed random effects and, alternatively,

simultaneously autoregressive (SAR) random effects [27] based upon spatial adjacency of the

districts of South Africa. The S1 Appendix provides additional details of our models. SAE was
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performed using the sae package [28] for R [29]. Code and data are provided in the S1 Data

and Code.

The response variable for all models was the logit transformation of the direct domain esti-

mates of HIV prevalence proportions among all persons, regardless of age or sex, and sampling

error variance was estimated as Delta-method approximation using the variances of the

domain estimates. Eleven of the 12 models included the logit transformation of district-level

ANC prevalence proportion as an auxiliary predictor. Model 1 included only the logit of ANC

prevalence proportion. Models 2–5 augmented model 1 with inclusion of the district-level per-

centages of formal dwellings, dependency ratio, socio-economic quintile and maternal mortal-

ity rate, respectively. Model 6 augmented model 2 with inclusion of the dependency ratio.

Model 7 augmented Model 6 inclusion of maternal mortality rate. Model 8 augmented model

7 with inclusion of the percentages of births which occurred in health care facilities. Model 9

was reduced from model 8 by deletion of the logit of ANC prevalence, and provides the con-

trast needed to assess the value of ANC prevalence. Models 10–12 relax the assumption of

independent model errors in models 1, 2 and 8, respectively, with inclusion of a SAR spatial

covariance structure. Relative model performance was assessed using the Akaike Information

Criterion (AIC) [30]. AIC balances model fit against model complexity; smaller values of AIC

indicate relatively better predictive ability. AIC is a dimensionless relative measure, and differ-

ences of 5 between models are customarily considered to be important.

District-level estimates of the burden of HIV infection, defined as the number of PLHIV,

were obtained as the product of district-level HIV prevalence from the best fitting model and

district population size obtained from Statistics South Africa [24].

Results

The correlation coefficient between the district-level survey domain estimates of HIV preva-

lence in the general population and HIV prevalence among pregnant women was 0.71 (S1

Table), so that the latter explains approximately 50% of the variation in the former. In contrast,

the correlation coefficients between district-level prevalence in the general population and the

percentage of formal dwellings among residences, dependency ratio, socio-economic quintile,

maternal mortality rate, percentages of births in health facilities and population density were –

0.36, 0.29, -0.28, –0.14, 0.09 and 0.01, respectively. Thus, we should expect HIV prevalence

among pregnant women to make the largest contribution of information in SAE.

The AIC-best model (model 3) included only ANC prevalence and dependency ratio as

out-of-survey predictors (Table 1). However, pairwise AIC differences among models 1–3,

5–7, 10 and 11 were smaller than 5, and therefore all of those models are plausible alternatives.

Differences among log-likelihoods were small except for differences between either models 9

or 12 and the others, so that AIC differences are generally dominated by model complexity

rather than fit. ANC prevalence was the superior predictor of survey-based prevalence. Inclu-

sion of auxiliary predictors other than dependency ratio (model 3), resulted in larger AIC val-

ues than ANC prevalence alone (model 1). Further, exclusion of ANC prevalence yielded the

worst of the models (model 9). Inclusion of the SAR spatial effect of district location did not

improve model fit (i.e., compare models 1 with 10, 3 with 11 and 8 with 12).

The AIC-best Fay-Heriott model (model 3) produced district-level estimates of HIV preva-

lence which were typically more precise, and never less precise, than the direct survey-based

domain estimates (Fig 1). The reduction in relative standard errors of estimation (RSE) were

greatest among districts which produced the least precise direct estimates; SAE gains little

where direct estimates are precise. Assuming, for example, that “useful” estimates are those for

which RSE� 20%, then model 3 produced useful estimates from 15 of the 23 districts for
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which direct estimation failed to produce useful estimates. Accordingly, the Fay-Herriot esti-

mates of HIV prevalence had narrower 95% confidence intervals than the direct estimates

(Fig 2). Additionally, some point estimates of HIV prevalence differed rather substantially

(e.g., Sedibeng, iLembe, Central Karoo and West Rand). The design-based survey domain

Table 1. Model comparison based on the log-likelihood and Akaike Information Criterion (AIC; smaller is better).

PANC denotes the HIV prevalence proportion among pregnant women obtained from surveillance at antenatal care

(ANC) clinics. Other auxiliary predictors are: Formal = formal dwellings (%); DR = dependency ratio; SEQ = socio-

economic quintile; MMR = maternal mortality rate; HFB = births in health-care facilities (%). Covariance structures

(Cov) are independence (Ind) or simultaneously autoregressive (SAR).

Model Predictor(s) Cov Log-likelihood AIC

1 logit(PANC) Ind −23.96 53.92

2 logit(PANC) + Formal Ind −23.42 54.85

3 logit(PANC) + DR Ind −22.37 52.73

4 logit(PANC) + SEQ Ind −22.84 59.68

5 logit(PANC) + MMR Ind −23.75 55.51

6 logit(PANC) + Formal + DR Ind −22.36 54.73

7 logit(PANC) + Formal + DR + MMR Ind −22.34 56.67

8 logit(PANC) + Formal + DR + MMR + HFB Ind −22.20 58.39

9 Formal + DR + MMR + HFB Ind −37.81 87.63

10 logit(PANC) SAR −23.95 55.91

11 logit(PANC) + DR SAR 22.37 54.73

12 logit(PANC) + Formal + DR + MMR + HFB SAR −31.80 77.61

https://doi.org/10.1371/journal.pone.0212445.t001

Fig 1. Relative standard errors of district-level estimates. Relative standard errors (RSE) of the 52 South African

district-level HIV prevalence estimates obtained from the AIC-best Fay-Herriot area-level model and direct (survey

domain) estimation.

https://doi.org/10.1371/journal.pone.0212445.g001
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estimate of HIV prevalence in West Rand was of little value for lack of precision, and likely

misleading, whereas the small-area estimate was similar to surrounding districts and consis-

tent with programmatic data.

HIV prevalence is easily translated to the numbers of PLHIV. Again, confidence intervals

for Fay-Herriot small-area estimates of numbers of PLHIV were generally narrower (and

Fig 2. HIV prevalence in the districts of South Africa, 2012. District-level estimates of HIV prevalence and 95%

confidence intervals from the 2012 South African National HIV survey, and from Fay-Herriot small-area estimation.

Numeric values are provided in S2 Table.

https://doi.org/10.1371/journal.pone.0212445.g002
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never wider) than direct survey-based estimates (Fig 3). Rankings based upon point estimates

also differed slightly, but less so than the prevalence estimates because of the large effect of dis-

trict population size on numbers of PLHIV.

A strong east-west gradient in HIV prevalence is evident (Fig 4, upper). However, the popu-

lation is concentrated in eastern urban centers (City of Johannesburg and Tshwane [Pretoria]

Fig 3. HIV burden in the districts of South Africa, 2012. District-level estimates of numbers of people living with

HIV (PLHIV) and 95% confidence intervals from the 2012 South African National HIV Survey and from Fay-Herriot

small-area estimation.

https://doi.org/10.1371/journal.pone.0212445.g003
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Fig 4. Geographic distribution of HIV prevalence and burden. Geographic distribution of HIV prevalence (top) and numbers of

people living with HIV (PLHIV, bottom) in South Africa, 2012, based upon Fay-Herriot small-area estimation. Numeric values of

estimates are provided in S2 Table.

https://doi.org/10.1371/journal.pone.0212445.g004
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in the northeast, and eThekwini [Durban] on the east coast). Therefore the numbers of PLHIV

are concentrated in those urban centers, along the eastern borders with eSwatini (formerly

Swaziland) and Mozambique, and to a lesser extent around the City of Cape Town on the

southwest coast (Fig 4, lower).

Discussion

Successful HIV epidemic control in the era of increasingly limited resources will require tar-

geted delivery of the “right things, in the right place and at the right time” [5]. Data-driven pub-

lic health actions that can deliver on this goal will require valid and reliable estimates of HIV

prevalence and numbers of PLHIV in areas containing small populations, including those

which are inadequately sampled by health surveys. Estimates should be as precise as possible to

minimize the risk of inefficient allocation of HIV program services. Multiple, statistically prin-

cipled, methods are available to estimate quantities over small geographic areas [16, 17, 19, 31,

32], which differ in data requirements and computational ease. The Fay-Herriot model pro-

vides epidemiologists and public health planners with an effective and easily implemented

approach to estimate HIV prevalence and numbers of PLHIV in small subnational areas.

The improvement in precision that we observed over survey domain estimation was largely

due to the availability of published district-level estimates of HIV prevalence among pregnant

women obtained from ANC surveillance. Data on HIV prevalence among pregnant women,

either from sentinel surveillance or routine reporting from prevention of mother-to-child

transmission of HIV services, are available from most sub-Saharan African nations [33].

Therefore the feasibility of area-level SAE of HIV prevalence in the general population

depends largely on the availability of probability-survey data including HIV testing. Outside of

South Africa, the DHS-Plus [34] and Population-based HIV Impact Assessments (PHIAs) [35]

provide those data from many sub-Saharan nations. The PHIA surveys include testing for

major metabolites of anti-retroviral medications and estimation of serum HIV loads and, in

principle, enable SAE of the entire 90-90-90 cascade (proportions of HIV-positive people who

know their status, on treatment, on treatment and virally suppressed).

Inclusion of the spatial SAR covariance structure did not improve the small-area estimates

of HIV prevalence in our data and models. However, that result does not imply that spatial

correlation is unimportant in other contexts. The SAR covariance structure is coarse-grained

in area-level models. First, it is based on binary indicators of whether pairs of districts are adja-

cent. In contrast, distance between districts is also likely to matter. Second, the spatial grain

(districts) is too coarse to capture finer scale correlations which may exist, say among census

enumeration areas. For example, spatial correlation is extremely important in geostatistical

models which incorporate more sensitive models for spatial structure [16, 17].

Small area estimation can improve estimates of HIV prevalence in small, unplanned analy-

sis domains. However, precision is ultimately limited by survey sample size. Therefore there is

no guarantee that any method for estimation in small unplanned domains will yield desirable

precision in any domain. The best that can be done is to use the best-available data and then

critically evaluate the utility of the gains for each small domain.

Policy makers can use these second-level subnational estimates to more efficiently reallocate

resources. Allocation of resources to areas with high HIV prevalence and large numbers of

PLHIV can provide care and treatment to more people, while saving money. Additionally,

programs can use those estimates to better understand the epidemic and plan where to place

intervention services.

The general east-west gradient in HIV prevalence observed in our analysis is consistent

with the heterogeneous distribution of HIV within South Africa as described by others. A
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model-based evaluation of factors accounting for this spatial patterning of HIV in South Africa

highlighted the role of differing prevalence of male circumcision and the frequency of non-

marital sexual activity [36]. It is likely that these, and sundry other cultural, demographic,

behavioral and individual HIV risk factors are indeed important epidemic drivers of this prev-

alence pattern in South Africa.

We chose the Fay-Herriot model because it is simplest method for SAE from aggregated

area-level predictor covariates, and is easily implemented using freely available software.

Data which are aggregated to subnational levels are often readily available because frequently

public health programs managed and census results are reported at those levels. Estimation is

straight-forward once the data have been obtained. The basic Fay-Herriot area-level model

requires the assumption that area-level level variances in the response variable are known.

Uncertainty may be underestimated as a result, and future applications of SAE of HIV preva-

lence, numbers of PLHIV and HIV incidence may benefit from the application of more

sophisticated methods which relax that assumption [37].

Conclusion

The basic area-level “Fay-Herriot” model is a viable choice for estimation of HIV prevalence

and numbers of PLHIV in small, unplanned survey domains. Major advantages include use of

commonly available aggregated area-level covariates, and relative ease of implementation

using freely available software. We assert that the basic area-level model is the most easily

implemented alternative, and requires only very modest computational resources. Our results

demonstrate that incorporation of data from ANC clinics, commonly available from sub-Saha-

ran Africa, can yield better estimates of HIV prevalence in the general populations of small

areas than the types of behavioral demographic variables which have been incorporated previ-

ously [16, 21]. Our small-area estimates of HIV prevalence in the general population of the dis-

tricts of South Africa were often more precise—and never less precise—than the design-based

domain estimates upon which they are based.
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